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Abstract: Two dimensional (2-D) images of electron temperature fluctuations 

with high temporal and spatial resolution were employed to study the 

sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: 1) 

2-D images revealed that the reconnection is localized and permitted the 

determination of the physical dimensions of the reconnection zone in the 

poloidal and toroidal planes. 2) The combination of a pressure bulge due to 

finite pressure effect or a kink instability accompanied with a sharp pressure 

point leads to an “X-point” reconnection process. 3) Reconnection can take 

place anywhere along the q~1 rational magnetic surface (both high and low 

field sides). 4) Heat flow from the core to the outside of the inversion radius 

during the reconnection time is highly asymmetric and the behavior is 

collective. These new findings are compared with the characteristics of 

various theoretical models and experimental results for the study of the 

sawtooth oscillation in tokamak plasmas. 
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I. Introduction  
 The intrinsically enhanced energy confinement property of tokamak plasmas 

compared with other magnetic confinement devices is largely due to the rotational 

transform induced by a self driven internal current. A common representation of the 

profile of the plasma current is via the so-called safety factor (q) profile. Here, q is simply 

a measure of the number of times a field line goes around a torus the long way (toroidal 

direction) for each time around the short way (the poloidal direction). In an ordinary 

tokamak plasma, the current density profile is positive definite toward the center and the 

corresponding q - profile is monotonically increasing towards the edge. Under these 

conditions, the repetitive disruptive behavior of the plasma core within the q~1 layer, 

commonly referred to as “sawtooth oscillation”, was discovered in the early days of 

fusion plasma research [1]. This is known as the m/n=1/1 internal kink mode where m 

and n are poloidal and toroidal mode numbers, respectively. An excellent review of 

recent research in the field of sawtooth oscillations is given in Ref. [2].  

 Understanding of the magnetic reconnection process associated with the sawtooth 

oscillation may provide insight into the global disruptive behavior of current driven 

toroidal plasmas, where the nested magnetic field ruptures and the stored plasma energy 

instantaneously bursts out to the periphery of the plasma. As a consequence, this 

understanding may contribute significantly to the success of next step magnetic fusion 

devices such as ITER (Latin word for ‘The way’) which will be constructed by an 

International Consortium. The topological change of the magnetic field configuration, e.g. 

the magnetic reconnection process, is also a phenomenon of broad interest since it has 

been observed in laboratory plasmas [3], solar flares [4], and interstellar space [5]. Many 

physical models developed to describe magnetic topology change in toroidally confined 

fusion plasmas, solar flares, and inter-stellar objects have actively contributed toward the 

goal of providing a common physics understanding of magnetic reconnection. In 

particular, the recent observation of sawtoothing radio frequency emission from solar 

flares [6] suggests that the physical mechanism of the repetitive small scale disruptive 

behavior may be universal in current carrying toroidal plasmas.  

 The complexity of the phenomena requires sophisticated multi-dimensional 

diagnostic tools that can measure local physical quantities with high temporal and spatial 
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resolution to precisely map out highly asymmetric physical phenomena like sawtooth 

oscillations in tokamak plasmas. This paper is the first such an attempt to provide high 

spatial and temporal resolution 2-D images of the highly asymmetric electron 

temperature fluctuation behavior obtained during the sawtooth oscillation. It reveals new 

experimental insights into the heat redistribution during driven reconnection process not 

previously available. A brief background of theoretical and experimental studies of the 

sawtooth oscillation relevant to the experimental results is provided in Section II. In 

Section III, a description of 2-D Electron Cyclotron Emission (ECE) imaging on the 

Toroidal EXperiment for Technology Oriented Research (TEXTOR) device is provided. 

The detailed experimental observations of the reconnection processes such as “X-point” 

reconnection, observation of a high field side crash, and measurement of the toroidal 

localized reconnection zone are discussed in Section IV. In Section V, a brief comparison 

of the experimental results with the relevant physical models is provided.  

 

II. Background of the Physics of the Sawtooth Oscillation 
 In the full reconnection model [7] proposed by Kadomtsev and supported by 

simulation [8] by Sykes, as the plasma current density in the core region increases (q(0) 

drops below unity), the m/n=1/1 mode becomes unstable and a pressure driven instability 

flattens the central pressure as well as the plasma current through an “X-point” 

reconnection zone along the magnetic pitch of the q~1 surface on the reconnection time 

scale defined by earlier references [7, 8]. On the other hand, in the quasi-interchange 

model [9] proposed by Wesson, the core plasma having a flat q (q~1) profile inside the 

inversion radius becomes unstable due to a slight change of magnetic pitch angle instead 

of a pressure driven instability. As a result, the hot spot deforms into a crescent shape and 

cooler plasmas are convectively induced into the concave section of the crescent hot spot 

without any reconnection process. This model was supported by x-ray tomography [10] 

on the Joint European Tokamak (JET) device; however, a later experimental study [11] 

on the Tokamak de Varennas (TdeV) device concluded that there exists no unique 

solution for the image through the inversion process of the chordal measurements of the 

x-ray tomography when only a limited number of independent viewing lines are used. 

The distinctively different evolution of the hot spot and/or cold island formation between 
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the two models during the reconnection time could not be conclusively identified due to 

the lack of reliable 2-D experimental tools. Furthermore, when no significant change was 

observed [12, 13] in the core plasma current (q(0) was changed only from 0.7 to 0.8) 

before and after the reconnection, both models were inconsistent with the fact that the 

value of q(0) was less than ~1 before and after the reconnection. However, it should be 

noted that there exists an experimental result that q(0) was changed from ~0.7 before the 

reconnection to ~1.0 after reconnection in a shaped plasma (DIII-D) [14]. This 

discrepancy motivated further modeling of the driven reconnection process of the 

sawtooth oscillation such as a secondary reconnection process [15]. Observation of a 

localized electron temperature bulge [16, 17] in the Tokamak Fusion Test Reactor 

(TFTR) device has been interpreted by a finite pressure effect on the sawtooth oscillation 

[18]. Here, a pressure bulge of the m/n=1/1 mode at the low field side leads to the global 

stochasticity of the magnetic field [18]. This was thought necessary to reconcile a minute 

change of the current density and fast change of the pressure during the reconnection time 

observed in a finite beta plasmas, where beta is the ratio between plasma pressure 
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B µ2/2 ). The first pressure driven ballooning 

mode instability was introduced to account for the observed disruptions in the high beta 

(βp ~ 1 and βt(0) ~ 4%) plasmas [19] in the TFTR device. These modes are more 

pronounced at the bad curvature side of the magnetic surface (low field side in Fig. 1). 

Also, a 3-D local reconnection model where the reconnection zone is localized in the 

toroidal plane with many assumptions has been proposed in Ref. [16]. In plasmas with a 

moderate beta (βp ~ 0.4 and βt(0) ~ 1%), where the present 2-D imaging experimental 

results are to be discussed, the level of ballooning instability and global stochasticity of 

magnetic field lines that is strongly coupled with the pressure surfaces, is moderate 

compared to those at high beta plasmas as demonstrated in Ref. [20].  

 The heat transport (redistribution) process during the sawtooth oscillation has also 

been extensively studied experimentally in order to understand the exceedingly fast time 

scale of the reconnection process of the sawtooth oscillations without precursors [17]. In 

general, the time scale of the reconnection process is provided by Ref. 7 as 
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where *

A
!  is the modified Alfven transit time and !" is the resistive diffusion time. Often, 

the “crash time” is referred to as the time period from the maximum value of Te(0) to the 

minimum value of Te(0), whereas the reconnection time is referred to as the time period 

from the time when island formation starts (indication of the reconnection at the lower 

field side) to the time when the island is fully stabilized. In general, the experimentally 

observed reconnection time is believed to be faster than the value given in Eq. 1. The 

faster time scale is often interpreted as the result of electron inertia [21], whereas the 

longer time scale is based on resistive behavior and is given in Eq. 1.  

 X-ray monitoring systems [1] or X-ray tomography [10, 11, 22] have been 

routinely employed to study sawtooth oscillations in tokamak plasmas since their 

discovery. However, the X-ray emission signal from hot plasmas is complex due to the 

multiple parametric dependence of the emission (electron density, temperature, and 

impurity content) and the limited number of chordal views in most cases hampers the 

determination of the uniqueness of each model. Even multiple views [22] around the 

torus can only provide a qualitative asymmetric view of the reconnection processes. In 

contrast, electron cyclotron emission ECE [23] which depends solely on electron 

temperature in optically thick plasmas [24], has been a powerful tool to study local 

electron temperature fluctuations since the electron temperature is closely tied to the 

changes of the local plasma resistivity and known to be equalizing within the same flux 

zone on a thermal velocity time scale. However, ECE measurements have previously 

been limited to 1-D and reconstruction of the full image can only be achieved through 

reliance on symmetry arguments and various assumptions concerning the nature of the 

flux surface. Furthermore, knowing that the behavior of the electron temperature is highly 

asymmetric toroidally and poloidally on the reconnection time scale, it requires 

considerable imagination to reconstruct the heat redistribution process during the 

reconnection time scale. Recent studies of sawtooth physics at TEXTOR and Tore Supra 

[25] using a 1-D ECE system reported that the fast heat flow was also observed; however, 

it was not possible to study the topology of the reconnection process in detail. 

  

III. 2-D Electron Cyclotron Emission Imaging System 
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 In magnetized plasmas, the electron gyro motion results in emission of radiation 

at the electron cyclotron frequency and its harmonics 

     
e
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=!       (2) 

where B is the applied magnetic field strength, e is the electron charge, and m is the 

electron mass. In optically thick plasma where the electron density and temperature are 

sufficiently high, the radiation intensity approaches that of black body emission where 

the intensity is directly proportional to the local electron temperature. In tokamak 

plasmas, the ECE frequency has a spatial dependence due to the radial dependence of the 

applied toroidal magnetic field  
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where Ro and Bo are the geometric center and the magnetic field strength at the center of 

the plasma, respectively. The fundamentals of the ECE process are well established and 

have been routinely utilized to measure local electron temperatures in fusion plasmas [23, 

24]. In a 2-D electron cyclotron imaging (ECEI) system, the single antenna of a 

conventional 1-D radiometer is replaced by an array of antennas as shown in Fig.1. Here, 

large collection optics are required to project high resolution images of the local electron 

temperature onto sensitive 1-D arrays through advances in array technology with well 

defined antenna patterns and state-of-the-art wide band radio frequency (RF) and 

intermediate frequency (IF) electronics as described in detail in Ref. [26]. A prototype 

system [27] has been developed for the TEXTOR tokamak plasma. The sampling volume 

of the image at the focal plane is 16 cm (vertical) x 8 cm (radial) and the vertical 

resolution is determined by the antenna pattern of ~2 cm (Full Width at Half Maximum 

[FWHM]) for each pixel and the radial resolution is ~1 cm across the core of the tokamak 

plasma (total of 128 channels). The time resolution is primarily limited by the digitizer 

and the fastest time scale can be up to 5 µsec. 

 

IV. Experimental results 
a) Plasma parameters and sample 2-D images  
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 The TEXTOR tokamak plasma has a circular shape with a major radius of 175 cm 

and minor radius of 46 cm. The range of toroidal magnetic field in the present work was 

in the range 1.9 - 2.4 T and the corresponding plasma current was <305 kA. The H+ 

plasma is heated with energetic neutral beams (D0, ~50 keV, up to 3 MW) in order to 

maximize the temperature fluctuation of the sawtooth oscillation as well as to control 

plasma rotation (by varying the ratio of co- to counter injection with respect to the 

direction of plasma current. The key plasma parameters were as follows: the central 

electron density and temperature range from 1.5 to 2.5 x 1019 m-3 and from 1.2 to 1.6 keV, 

respectively. The corresponding peak toroidal beta is ~1.0 % and the average poloidal 

beta is between 0.3 and 0.5. The toroidal rotation of the plasma varied from ~1 x 104 m/s 

to ~8 x 104 m/s. The speed of a thermal electron is ~6 x 107 m/s. The Alfven and ion 

acoustic speeds are 5 x 106 and 7 x 105 m/s., respectively. Using plasma parameters close 

to the q~1 surface, the calculated characteristic reconnection time (τc) is ~700 µs. 

Since the radial coverage of the 2D ECEI system is limited to ~7 cm near the core of 

the plasma, radial extensions of the image can be obtained with a variation of the LO 

source frequency and/or the applied magnetic field. The fluctuation quantities are 

relatively calibrated to the averaged value obtained with a long integration time and the 

intensity of the images is represented by δTe/<Te>, where Te is the electron temperature, 

< > is the time average, δTe is the fluctuation level (= Te - <Te>) and <Te> is constant for 

the duration of many sawtooth oscillations. As demonstrated in previous ECE studies, the 

fluctuation level before and after the crash is introduced to emphasize changes of heat 

flow during the reconnection time [16]. 

 The measured 2-D images of the electron temperature fluctuation through a 

composition of three images from discharges with slightly different magnetic fields (2.3T, 

2.35T and 2.4T) are introduced to illustrate the reconnection process during sawtooth 

oscillation. Since the change of magnetic field was less than ±  2%, there was little 

change in plasma parameters such as temperature and density. The composite image 

based on an average of ~10 identical sawtooth oscillations demonstrates that the behavior 

of the reconnection phenomena is consistent with classical pictures on a global scale as 

shown in Fig. 2. The portion of the m/n=1/1 mode (hot spot shown in whitish green 
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color; frame 1) within the inversion radius (shown as a white double line) suddenly 

disappears and an island (cold spot shown as a bluish black color) sets in, located in the 

zone previously occupied by the hot spot (frame 2). The heat removed from inside the 

inversion radius reappears at the outside of the inversion radius from the bottom of the 

low field side and the heat distribution becomes symmetric (frame 3). The accumulated 

heat in the mixing zone eventually fades away through a diffusive process. The estimated 

inversion radius is solely determined from the temperature fluctuation data using the 

property that the relative variation of the temperature fluctuation is minimum near the 

inversion radius. The actual transient reconnection physics, described below, will be 

addressed via images from a single frame image of the sawtooth oscillation.  

b) “X-point” Formation during Reconnection Time at the Low Field Side 

 There are many sawtooth oscillations in a single discharge (one sawtooth period is 

~15 ms, whereas the discharge duration is ~5 seconds). After examination of many views 

of each sawtooth crash, a representative view of the sequence of 2-D images during the 

reconnection process is provided in Fig. 3. Note that the phase of each reconnection 

process at the view position is strongly governed by the local nature of the reconnection 

event and the plasma rotation speed. The distortion of the m/n=1/1 mode at the low field 

side is clearly illustrated after the symmetric image shown in frame 1 and the growth of 

sharp temperature point shown in frame 3 and 4, which even crosses the inversion radius 

and leads to puncture of the magnetic surface as illustrated in this figure. The image of a 

sharp temperature formation is quite similar to the “pressure finger” of the model based 

on pressure driven ballooning modes predicted to occur predominantly in the low field 

side. The heat flow starts with a small opening and the opening grows as the heat flow 

increases to ~15 cm. The initial formation of the heat flow is similar to the “X-point” of 

the magnetic field. Since the time scale of the electron thermal velocity is nanoseconds 

and the progress of the image is tens of microseconds, it is a reasonable assumption that 

the flow of the heat follows the local magnetic field lines. The spatial broadening of the 

heat outside the inversion radius shown in frames 6 and 7 can account for the toroidal 

spread of the heat, since the transit time of electrons along the torus is on the order of a 

microsecond. The flow of the heat through the opening of the magnetic field is highly 
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collective which may not be the case if the global stochasticity in the later stage of the 

reconnection process is dominant. At moderate plasma beta values (poloidal and toroidal) 

similar to the experimental conditions, the growth of the ballooning mode and 

stochasticity is expected to be moderate [20]. At the end of the reconnection phase, the 

temperature profile recovers symmetry (fully established island) as shown in frame 8. 

 During examination of many reconnection images within the inversion radius 

from the rotating plasmas, it was found that the reconnection can happen everywhere 

along the poloidal plane in the low field side as far as the 2-D view is extended.  Often, a 

portion of the images of the reconnection was captured near the top or bottom of the 

optical view located in the low field side as shown in Fig. 4. In some cases, there is a 

sudden disappearance of the m/n=1/1 mode toward the center of the plasma and an island 

(cold) appears instead. 

 c) 2-D Images of the Sawtooth Crash at High Field Side 

 In a second experimental campaign, the sample volume of the imaging system 

was moved to the high field side of the q~1 surface in order to explore reconnection 

phenomena there. Similar to the low field side case, many sawtooth oscillation images 

were reviewed. It was striking to find that the experimental results in the high field side 

were quite similar to the observations made at the low field side where the reconnection 

can happen everywhere along the poloidal plane. The progressive detailed images of the 

reconnection process at the high field side are illustrated in Fig. 5. In the early stages, 

there is a symmetry of the m/n=1/1 mode as shown in frame 1. In frame 2, distortion of 

this mode is visible and a sharp temperature point is formed, but did not lead to the 

reconnection. This is attributed to the fact that the accompanying kink motion (swelling 

of the temperature) is not sufficiently strong to lead to reconnection. As the pointed 

surface is retreating, temperature swelling of the mode which is indicative of the growing 

kink instability or pressure bulge due to the finite pressure effect is shown in frames 3-6. 

In frame 7, the larger sharp temperature point pushes the magnetic surface beyond the 

inversion radius and heat flow starts through a small hole. The flow is highly collective as 

in the low field side. The puncture in the poloidal plane begins with a small hole and 



 10 

grows to ~10 cm. As the heat gushes out, the nested field lines from the core (island) 

push the remaining heat from the rear. This is consistent with the flattening process of the 

pressure profile (current profile) in the full reconnection model. These processes are 

illustrated in frames 8-11. As the heat is removed from the core, the closed field line 

topology is established and recovers the poloidal symmetry as shown in frame 12. 

d) Toroidal extent of the reconnection zone 

 The time history of one (innermost channel at z=0) of the 128 channels of the 

temperature fluctuation illustrates the typical precursor oscillations as the plasma rotates 

in the toroidal direction and the corresponding images at each time slice are shown in Fig. 

6a. The toroidal rotation speed is mainly driven by the momentum of the heating beam 

and the estimated speed is ~6 x 104 m/s. The progressive swelling (or increase of the 

temperature fluctuation level) as the reconnection time is approached, as shown in frame 

0 and 1 of the m/n=1/1 mode at the optical view position, is an indication of a kink 

instability as discussed in general MHD theory [28]. The portion of this mode captured in 

each frame is quite symmetric as shown in these figures. The last symmetric partial view 

of this mode before the full crash (frame 1) is followed by the tail of the m/n=1/1 mode 

shown in frame 2 as it rotates 90 degrees away toroidally. The wing shape of the heat 

spread may originate from the parallel temperature diffusivity. Simulation results for the 

TEXTOR plasma parameters, with and without parallel electron temperature diffusivity, 

are shown in Fig. 6b, respectively. As the plasma rotates further (180 degrees from frame 

1), the captured image contains a trace of island (cold spot) formation as shown in frame 

3. There is no sign of the heat flow to the outside of the inversion radius even after the 

hot spot at the midplane of the low field side passes to the opposite side (180 degrees) 

from the view position. A hint of the heat leakage beyond the inversion radius has been 

detected when it rotates further (additional 90 degrees) toward the optical view position 

and the heat flow pattern becomes highly asymmetric (frames 4 and 5). Reconnection is 

completed before the reconnection zone reaches the view position. At the end of the 

reconnection, the island is fully settled and symmetry is recovered as shown in frame 6 

together with the island (cold spot). In this example, the reconnection process starts when 

the view of the mode at the low field side on the midplane is around the ¾ turn from the 
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last symmetric view (frame 1) and is completed just before it enters into the optical view. 

Using this information, the toroidal extent of the opening can be estimated and it is found 

to be roughly equal to ~1/4 of the toroidal circumference of the plasma (~ 2.5 m).  

 A second example of the toroidal extent of the magnetic field puncture that can be 

estimated from the images of the sawtooth crash from rotating plasmas is given in Fig. 7, 

where the reconnection process starts from the bottom of the view and ends at the top of 

the view. The time required for the hot spot to cross the inversion radius is equivalent to 

the toroidal puncture size as shown in these images along the magnetic pitch of the q~1 

surface. Due to the fact that the poloidal opening of the magnetic surface is small (1/10 of 

the poloidal circumference) and the toroidal reconnection zone is along the magnetic 

pitch (q~1), both cases (Figs. 6a and 7) do not support the picture of localized 

reconnection in the toroidal direction. Often the hot spot suddenly moves toward the 

opposite direction of the low field side even though it is expected to cross the inversion 

radius as illustrated in Fig.7. Combining these observations with the randomness of the 

crash view within the inversion radius illustrated in Fig. 4, the toroidal extent of the 

reconnection zone has to be finite. Accurate estimation of the toroidal puncture size is 

limited due to the current ECE image size and it is ~3.3 m (larger than ¼ and less than ½ 

of the toroidal circumference). A further point to note is that the toroidal reconnection 

zone is along the local magnetic pitch, since the captured images of the reconnection 

process vary with the phase of the crash at the view point. 

 The island formation starts in the early stage of the time histories of both 

examples shown in Figs. 6a and 7 and it takes some additional time for the island to relax 

after the crash. In the full reconnection model, the formation of the island is defined to be 

the beginning of reconnection since it is assumed that the formation of the island is the 

result of a topological change of the magnetic field structure. The reconnection time, 

which starts when island formation is observed (precursor) and ends when the full island 

has been established in the core, is measured to be ~500 microseconds which is 

consistent with the value of the characteristic reconnection time (τc) provided in Eq. 1.  

However, it should be noted that the first hint of heat flow through the inversion radius is 

routinely observed in a later stage of the precursor. If the time when the first hint of heat 
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flow through the inversion radius is observed is defined as the beginning time of the 

reconnection process rather than the time when the island is formed, the inferred 

reconnection time is ~100 microseconds. 

V. Comparison between theoretical models and experimental observation 

High temporal and spatial resolution 2-D images of electron temperature 

fluctuations during the reconnection time provide new insights into the heat transfer 

process during the driven magnetic reconnection process with a strong guiding magnetic 

field (i.e., the presence of a strong toroidal field in tokamak plasmas). The observed 2-D 

images of the heat flow during the reconnection time exhibit a collection of bits and 

pieces of many theoretical models.  

 While the time evolution of the hot spot/cold island in early stage of the sawtooth 

oscillation in Fig. 6a and 7 is strikingly similar to those expected from the full 

reconnection model, note that the reconnection process takes place later in time. This 

observation suggests that there are additional physics mechanisms which may prevent the 

heat flow until a critical time. Alternatively, it could also imply that the reconnection 

process starts later in time, despite the fact that reconnection process is supposed to be 

initiated with the formation of the island [7]. Observation of the finite extent of the 

toroidal reconnection zone (1/3 of the toroidal circumference) is inconsistent with the full 

reconnection model where the plasma pressure and current density can be removed on a 

reconnection time scale given in Eq. 1 through a fully opened magnetic surface along the 

toroidal direction. However, the reconnection time given in Eq. 1 does not deviate from 

the experimental value based on the time scale of ~ 500 microseconds that starts at the 

formation of the island and ends at the fully developed island formation. This is 

consistent with the observation that multiple toroidal views of x-ray tomography exhibit a 

fading hot spot away from the reconnection position [22]. The role of the finite extent of 

the toroidal reconnection zone for the redistribution of the current density and pressure 

remains to be resolved in the future. The formation of a sharp point of the temperature 

perturbation at the low field side appears to be similar with the “pressure finger” of the 

ballooning model; however the fact that the observed reconnection event has no 
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preferential location along the poloidal magnetic surface at the moderate plasma beta may 

not applicable to the ballooning model [19, 20]. The time evolution of the hot spot and 

island during the reconnection process is clearly inconsistent with that of the ‘quasi-

interchange’ model. Also, this is inconsistent with the model of ‘Y-point’ formation at 

both separatrices of the island [20, 29, 30]. The experimental observations suggest that 

the initial process is “X-point” and develop into the “Y-point” reconnection process. The 

fact that heat flow from the core to the outside is highly collective suggests that 

stochasticity of the magnetic field lines may not be dominant mechanism for this case. 

Also, the heat flow pattern appears to follow the local magnetic field lines and this 

observation may suggest that the pressure and magnetic field lines are strongly coupled. 

The image of the ‘X-point’ heat flow in the initial stage of the reconnection process 

initiated by a clear sharp temperature point accompanied with a strong kink or finite 

pressure effect (bulge of the m/n=1/1 mode) and collective heat transfer behaviors of the 

hot spot resembles the hybrid reconnection process of the ballooning model (“pressure 

finger”) followed by the full reconnection model. 

VI. Conclusions 

Understanding of the driven magnetic reconnection process of the sawtooth 

oscillation is significant for many dynamic phenomena in plasmas confined by a 

magnetic field such as the control of future generations of magnetic confinement devices 

and a better understanding of sawtooth phenomena in solar flares in which the guiding 

magnetic field is weak. A novel 2-D ECEI system has been employed to capture the 

evolution of electron temperature variations during the reconnection time of the sawtooth 

oscillation in TEXTOR tokamak plasmas. A pressure driven instability (sharp pressure 

point due to the distortion of the m/n=1/1 mode) accompanied with a kink instability or 

pressure bulge (doe to the finite pressure effect on the m/n=1/1 mode) may be responsible 

for the magnetic reconnection process during the sawtooth oscillation. The heat transport 

(evolution of the hot spot/cold island) in the poloidal plane is well organized (collective 

behavior) and resembles that of the full reconnection model, but is inconsistent with that 

of the quasi-interchange. The observed pressure driven sharp point of the temperature 

fluctuation is similar to the “pressure finger” of the ballooning mode model. Observation 
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of the reconnection all around the q~1 rational surface in the poloidal may not applicable 

to the finite pressure effect and/or ballooning mode model. The reconnection zone is 

localized along the torus (1/10th of the poloidal surface and 1/3 of the toroidal plane).   
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Figure Captions 
FIG. 1 Schematics for the conventional 1-D ECE (a) and 2-D ECEI (b) system are 

provided. A 1-D system has a single detector for each sample volume; in a 2-D 

system a vertical array detector with wide-band transmission lines is used to map 

a two dimensional matrix of sample volume. The emission is collected by a large-

sized optics and images are formed onto the 1-D detector array.  

 

FIG. 2 The schematic of core temperature profile changes along with the poloidal 

cross section of the toroidal plasma and the time history of the electron 

temperature at z=0 and R=187 cm are provided. 2-D composite images of electron 

temperature fluctuations during the sawtooth crash phase are shown with the 

poloidal view of the plasma. (1) Partial image of the hot spot before the 

reconnection corresponds to a peaked profile of the electron temperature (2) 

Transient image taken in the middle of the reconnection process (3) Image after 

the reconnection is completed, corresponds to a flattened temperature profile.  

 



 16 

FIG. 3. 2-D images of the sawtooth crash at the low field side correspond to the 

times indicated in the electron temperature time trace at z=0 cm, R=191 cm. As 

the hot spot swells as shown in frames 3 and 4, a sharp temperature point is 

growing and crosses beyond the inversion radius. Eventually, the temperature 

point leads to the reconnection. Initially it forms an “X-point” in the poloidal 

plane (frame 5) and heat starts to flow to the outside through a small opening. The 

heat flow is highly collective and the opening is increasing up to ~15 cm. At the 

end, the heat is accumulated outside the inversion radius and the poloidal 

symmetry is recovered. 

 

FIG. 4. Views of 2-D images of the temperature fluctuation crossing the inversion 

radius (to the upper right hand corner, to the midplane and to thelower right hand 

corner) at the low field side, are illustrated.  

 

FIG. 5. 2-D images from the sawtooth crash at the high field side are shown with 

the time history of the electron temperature fluctuations at z=0, R=148 cm. The 

reconnection process is quite similar to that at the low field side. A sharp 

temperature point develops with the moderate swelling of the hot core (frame 4), 

but fails to lead to reconnection in the first attempt. In the second attempt, the 

sharp temperature point accompanied with the strong swelling of hot spot (kink 

instability or finite pressure effect) (frame 6, 7) succeeds in crossing the inversion 

radius through a small opening (~a few cm). The opening increases up to ~10 cm 

and the heat flow is highly collective. The nested magnetic surfaces from the core 

push the heat flow out (frame 11) and eventually the symmetry is recovered 

(frame 12).  

 

FIG. 6. (a) High resolution single frame images of sawtooth evolution along the 

toroidal direction. Swelling of the symmetric m/n=1/1 mode (frame 0 and 1) is an 

indication of temperature bulge due to the finite pressure effect or a kink 

instability. The toroidal extent of the reconnection zone (~2.5 m) is estimated 

based on plasma rotation. Direct view of the reconnection process was not 
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accessible due to its localized nature. (b) Simulation results of the magnetic flux 

surfaces of the m/n=1/1 mode with (right) and without (left) parallel heat 

diffusivity in M3D code.  

 

FIG. 7. High resolution single frame images of the sawtooth evolution along the 

toroidal direction. Swelling of the symmetric m/n=1/1 mode (frame #0 and #1) is an 

indication of the kink instability. The toroidal extent of the reconnection zone (~2.5 

m) is estimated based on plasma rotation. Here, a full view of the reconnection has 

been captured. 

 

 
Fig. 1 
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